Product Manual

1109 - Rotation Sensor
Contents

4 Product Features
4 Connections
4 Type of Measurement

5 Getting Started
5 Checking the Contents
5 Connecting all the pieces
5 Testing Using Windows 2000/XP/Vista
7 Testing Using Mac OS X

7 Programming a Phidget
7 Code Samples
7 Coding for your Sensor

8 Technical Information
8 Other Interfacing Alternatives
8 Analog Input Cable Connectors
9 Mechanical Drawing
9 Device Specifications

9 Product History

9 Support
Product Features

- Rotates 300 degrees

Connections
Designed to connect to a:

- 1018 - PhidgetInterfaceKit 8/8/8
- 1019 - PhidgetInterfaceKit 8/8/8 w/6 Port Hub
- 1070 - PhidgetSBC
- 1202 - PhidgetTextLCD

Type of Measurement
The sensor uses ratiometric measurement.
Getting Started

Checking the Contents

You should have received:

- A Rotation Sensor
- A Sensor Cable

In order to test your new Phidget you will also need:

- A PhidgetInterfaceKit 8/8/8 or a PhidgetTextLCD
- A USB Cable

Connecting all the pieces

1. Connect the Rotation Sensor to the Analog Input 6 on the PhidgetInterfaceKit 8/8/8 board using the sensor cable.
2. Connect the PhidgetInterfaceKit 8/8/8 to your PC using the USB cable.

Testing Using Windows 2000/XP/Vista

Downloading the Phidgets drivers

Make sure that you have the current version of the Phidget library installed on your PC. If you don’t, do the following:

Go to www.phidgets.com >> Drivers
Download and run Phidget21 Installer (32-bit, or 64-bit, depending on your PC)

You should see the icon on the right hand corner of the Task Bar.

Running Phidgets Sample Program

Double clicking on the icon loads the Phidget Control Panel; we will use this program to make sure that your new Phidget works properly. Since the sensor is connected to a 1018, the computer will see only the 1018. The sensor is providing data through the Analog input it is connected to.

The source code for the InterfaceKit-full sample program can be found under C# by clicking on www.phidgets.com >> Programming.
Double Click on the icon to activate the Phidget Control Panel and make sure that the **Phidget InterfaceKit 8/8/8** is properly attached to your PC.

1. Double Click on Phidget InterfaceKit 8/8/8 in the Phidget Control Panel to bring up InterfaceKit-full and check that the box labelled Attached contains the word True.

2. Make sure that the Ratiometric box is Ticked.

3. Turn the knob on the sensor. At fully clockwise it will read zero and at fully counter clockwise it will read 1000.

4. You can adjust the input sensitivity by moving the slider pointer.

5. Click on the Sensors button to bring up the Advanced Sensor Form.

1. In the Sensor 6 box, select the 1109 - Rotation Sensor from the drop down menu.

2. The rotation state of the sensor is represented here.
Testing Using Mac OS X

- Click on System Preferences >> Phidgets (under Other) to activate the Preference Pane.
- Make sure that the Phidget InterfaceKit 8/8/8 is properly attached.
- Double Click on Phidget InterfaceKit 8/8/8 in the Phidget Preference Pane to bring up the InterfaceKit-Full example. This example will function in a similar way as the Windows version, but note that it does not include an Advanced Sensor Display.

Programming a Phidget

Phidgets’ philosophy is that you do not have to be an electrical engineer in order to do projects that use devices like sensors, motors, motor controllers, and interface boards. All you need to know is how to program. We have developed a complete set of Application Programming Interfaces (API) that are supported for Windows, Mac OS X, and Linux. When it comes to languages, we support VB6, VB.NET, C#.NET, C, C++, Flash 9, Flex, Java, LabVIEW, Python, Max/MSP, and Cocoa.

Code Samples

We have written sample programs to illustrate how the APIs are used.

Due to the large number of languages and devices we support, we cannot provide examples in every language for every Phidget. Some of the examples are very minimal, and other examples will have a full-featured GUI allowing all the functionality of the device to be explored. Most developers start by modifying existing examples until they have an understanding of the architecture.

Go to www.phidgets.com >> Programming to see if there are code samples written for your device. Find the language you want to use and click on the magnifying glass besides “Code Sample”. You will get a list of all the devices for which we wrote code samples in that language.

If this is your first time writing a program to control a Phidget, you should read the Getting Started Guide for the language you are planning to use.

Coding for your Sensor

Phidget analog sensors do not have their own API, but instead their output is a voltage that is converted to a digital value and accessed through the SensorValue properties and events on a PhidgetInterfaceKit. It is not possible to programmatically identify which sensor is attached to the Analog Input. Your application will need to apply any formulas from this manual to the SensorValue to translate it into usable data.

See the PhidgetInterfaceKit product manual for an overview of its API and a description of our architecture.
Technical Information

At fully clockwise the sensor reads zero, and at fully counter clockwise the sensor reads 1000. The maximum resistance of the potentiometer is 10K ohm.

Other Interfacing Alternatives

If you want maximum accuracy, you can use the RawSensorValue property from the PhidgetInterfaceKit. To adjust a formula, substitute (SensorValue) with (RawSensorValue / 4.095)

If the sensor is being interfaced to your own Analog to Digital Converter and not a Phidget device, our formulas can be modified by replacing (SensorValue) with (Vin * 200). It is important to consider the voltage reference and input voltage range of your ADC for full accuracy and range.

Analog Input Cable Connectors

Each Analog Input uses a 3-pin, 0.100 inch pitch locking connector. Pictured here is a plug with the connections labeled. The connectors are commonly available - refer to the Table below for manufacturer part numbers.

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Part Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molex</td>
<td>50-57-9403</td>
<td>3 Position Cable Connector</td>
</tr>
<tr>
<td>Molex</td>
<td>16-02-0102</td>
<td>Wire Crimp Insert for Cable Connector</td>
</tr>
<tr>
<td>Molex</td>
<td>70543-0002</td>
<td>3 Position Vertical PCB Connector</td>
</tr>
<tr>
<td>Molex</td>
<td>70553-0002</td>
<td>3 Position Right-Angle PCB Connector (Gold)</td>
</tr>
<tr>
<td>Molex</td>
<td>70553-0037</td>
<td>3 Position Right-Angle PCB Connector (Tin)</td>
</tr>
<tr>
<td>Molex</td>
<td>15-91-2035</td>
<td>3 Position Right-Angle PCB Connector - Surface Mount</td>
</tr>
</tbody>
</table>

Note: Most of the above components can be bought at www.digikey.com
Mechanical Drawing

1:1 scale

Note: When printing the mechanical drawing, "Page Scaling" in the Print panel must be set to "None" to avoid re-sizing the image.

Device Specifications

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Consumption</td>
<td>500uA</td>
</tr>
<tr>
<td>Output Impedance</td>
<td>10K ohms</td>
</tr>
<tr>
<td>Supply Voltage</td>
<td>3.0VDC to 5.25VDC</td>
</tr>
</tbody>
</table>

Product History

<table>
<thead>
<tr>
<th>Date</th>
<th>Board Revision</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>June 2002</td>
<td>n/a</td>
<td>Product Release</td>
</tr>
<tr>
<td>August 2004</td>
<td>n/a</td>
<td>Analog input connector changed from stereo jack to 3-pin Molex</td>
</tr>
</tbody>
</table>

Support

Call the support desk at 1.403.282.7335 8:00 AM to 5:00 PM Mountain Time (US & Canada) - GMT-07:00

or

E-mail us at: support@phidgets.com